Abstract

Using X-ray diffraction, Mossbauer spectroscopy, and Auger spectrometry, it has been established that oxygen affects the sequence of solid-state reactions upon mechanical alloying of two types of powders mixtures consisting of an Mo/O composite and Fe with the elemental (atomic) ratios 74.4: 6.7: 18.9 (type 1) and 70.3: 11.7: 18 (type 2). For the samples of both types the process begins with the formation of a nanostructure in Mo and penetration of Fe atoms along oxygen-saturated grain boundaries. The feasibility of two types of reactions depending on the oxygen content has been considered. In the samples of the first type, a reaction Mo/O + Fe → bcc Mo + bcc Mo-O-Fe → bcc Mo74.4O6.7Fe18.9 occurs. The final product is assumed to be a supersaturated solid solution in which O atoms are located in interstitial positions (lattice interstices) and Fe atoms in substitutional positions (lattice sites). For the samples of the second type, an appreciably different reaction has been suggested: Mo/O + Fe → bcc Mo + hcp Mo63O15Fe22 → bcc Mo81Fe19 + Am Mo31O52Fe17, where Am is an amorphous phase. The correlation (established by Butaygin and Povstugar (Dokl.-Chem. 398 (Part 2), 196–199 (2004)) between the rate of the consumption of the second component and the ratio of the yield strengths of the base (Mo) and second (Fe) elements has been confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.