Abstract

We developed a rat model of oral cancer pain by inoculating cancer cells into the lower gingiva. A squamous cell carcinoma (SCC) derived from Fisher rats, SCC-158, was inoculated into the subperiosteal tissue on the lateral side of the lower gingiva in male Fisher rats. Inoculation of cancer cells induced marked mechanical allodynia and thermal hyperalgesia in the ipsilateral maxillary and mandibular nerve area. Infiltration of the tumor cells into the mandible and the completely encompassed inferior alveolar nerve was observed. Calcitonin gene–related peptide (CGRP)–, substance P (SP)–, ATP receptor (P2X 3)–, and capsaicin receptor (TRPV1)–immunoreactive cells strikingly increased in the small-cell group of trigeminal ganglia (TGs) after tumor cell inoculation. The TRPV1-immunoreactive cells also increased in the medium- and large-cell groups. Retrograde tracing combined with immunofluorescence techniques revealed the increased expression of peptides and the receptors in maxillary nerve afferent neurons. These results suggest that inoculation of SCC cells into the lower gingiva produces mechanical allodynia and thermal hyperalgesia, indicating the establishment of a novel rat model of oral cancer pain. Increased expression of CGRP, SP, P2X 3, and TRPV1 in the TG may be involved in the behavioral changes in this model. Perspective To clarify the mechanisms of oral cancer pain, we examined the expression of calcitonin gene–related peptide, substance P, ATP receptor P2X 3, and capsaicin receptor TRPV1 in trigeminal ganglia. Characterizations of these molecular systems which mediate pain perception are important to develop novel clinical tools for promoting relief of oral cancer pain.© 2006 by the American Pain Society

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.