Abstract

TiFe is a very interesting material for hydrogen storage in the solid state, due to its hydrogen capacity of 1.9 wt % and to the fact it can be absorb/desorb hydrogen at room temperature. However, the TiFe produced by casting does not absorb hydrogen, unless a procedure called activation is applied, which is based on a repetition of several thermal cycles. This study evaluates the effects of a mechanical activation route for the TiFe intermetallic compound, namely, cold rolling (CR) under inert atmosphere. Stoichiometric TiFe was prepared from elementary powders by arc melting. Ingot was grinded and then cold rolled for 20 and 40 passes under argon inside a glove box, with moisture and oxygen contents below 0.1 ppm. Cold rolled samples consisted of two parts: powder particles and thin cracked flakes. The results showed that mechanically activated samples by CR exhibited rapid absorption of hydrogen at room temperature, without using a thermal activation process. In general, the average storage capacity of hydrogen was 1.4 wt% H2 for the first absorption, regardless of the number of passes for both flake and powder samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.