Abstract

Harnessing mechanical forces to activate latent catalysts has emerged as a novel approach to control the catalytic reactions in organic syntheses and polymerization processes. However, using polymer mechanochemistry to activate platinum-based catalysts, a class of important organometallic catalysts in industry, has not been demonstrated so far. Here we show that the platinum-acetylide complex is mechanoresponsive and can be incorporated into a polymer backbone to form a new mechanophore. The mechanically induced chain scission was demonstrated to be able to release catalytically active platinum species which could catalyze the olefin hydrosilylation process. Various control experiments were conducted to confirm that the chain scission and catalytic reaction were originated from the ultrasound-induced dissociation of platinum-acetylide complex. This work further exemplifies the utilization of organometallic complexes in design and synthesis of latent catalysts for mechanocatalysis and development of self-healing materials based on silicone polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.