Abstract

Pad asperities in chemical-mechanical polishing (CMP) provide necessary forces for mechanical abrasion. This article investigates the abrasive behaviour of polishing pads at the asperity contact scale. A contact mechanics model predicts that compliant and soft asperities or rigid and hard asperities may solely achieve either large contact area or high indentation depth respectively, whereas bi-layered asperities can enable both the enlarged contact and deep abrasion. Hemispherical pad micro-asperities with precise dimensions, including the new bi-layered design, were fabricated using thermal reflow and micro-replica molding techniques and their polishing behaviours were experimentally compared using a pin-on-disk polishing setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.