Abstract
In this work we address the problem of monitoring the evolution of clusters, which became an important research issue in recent years due to our ability to collect and store data that evolves over time. The evolution is traced through the detection and categorization of transitions undergone by clusters' structures computed at different points in time. We adopt two main strategies for cluster characterization --representation by enumeration and representation by comprehension -, and propose the MEC (Monitor of the Evolution of Clusters) framework, which was developed along the lines of the change mining paradigm. MEC includes a taxonomy of various types of clusters' transitions, a tracking mechanism that depends on cluster representation, and a transition detection algorithm. Our tracking mechanism can be subdivided in two methods, devised to monitor clusters' transitions: one based on graph transitions, and another based on clusters' overlap. To demonstrate the feasibility and applicability of MEC we present real world case studies, using datasets from different knowledge areas, such as Economy and Education.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.