Abstract

The aim of this study was to assess the meat quality attributes of broiler chickens fed diets supplemented with silver nanoparticles coated on zeolite. A total of 375 one-day-old broilers was assigned in a completely randomized design to 1 of 5 treatment groups including: basal diet, basal diet supplemented with 1% zeolite, and basal diet supplemented with one of the three levels of zeolite coated with 25, 50 and 75 ppm nanosilver. On d 42, five birds per treatment were slaughtered to assess the meat quality attributes of breast and thigh. Breast meat quality attributes were not influenced by the dietary treatment. Birds fed basal diet supplemented with 50 and 75 ppm nanosilver had higher levels of water-holding capacity than those fed on diets containing 1% zeolite (P). Thigh muscle of birds fed basal diet supplemented with 50 and 75 ppm nanosilver had a higher L* value than the control diet (P). For b* values, thigh muscle of birds fed the control diet were significantly higher than those of birds fed zeolite coated with 75 ppm nanosilver diet. The highest value of hardness, gumminess, and chewiness for breast meat were recorded by birds fed zeolite coated with 75 ppm nanosilver diet. The highest values of gumminess and chewiness of broiler chickens thigh muscle were observed in the group of birds receiving zeolite diets without nanosilver supplementation (P). In conclusion, broiler diets supplemented with silver nanoparticles coated on zeolite improved water-holding capacity of thigh muscle; although, further studies are needed to provide strong evidences to the exact mechanisms of action for silver nanoparticles coated on zeolite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.