Abstract
The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a forester's variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these developments have expanded our knowledge and sample of woods, the methodologies employed to measure wood SG have not received as much scrutiny as SG's ecological importance. Here, we reiterate some of the basic principles and methods for measuring the SG of wood to clarify past practices of foresters and ecologists and to identify some of the prominent errors in recent studies and their consequences. In particular, we identify errors in (1) extracting wood samples that are not representative of tree wood, (2) differentiating wood specific gravity from wood density, (3) drying wood samples at temperatures below 100°C and the resulting moisture content complications, and (4) improperly measuring wood volumes. In addition, we introduce a new experimental technique, using applied calculus, for estimating SG when the form of radial variation is known, a method that significantly reduces the effort required to sample a tree's wood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.