Abstract

Wave dynamics in the intake system are known to strongly influence the performance of naturally aspirated internal combustion (IC) engines. Detailed measurements of the wave dynamics are required to optimize the performance of an engine, to validate the results of an engine performance simulation or to better understand the physics of the intake system. Five different methods for making such measurements are discussed in this paper. Four are based on different forms of pressure measurement and one uses hot-wire anemometry. The different methods are investigated by using results obtained on a single cylinder research engine. The different methods are used to produce measurements of fluctuating pressure and velocity as well as the specific acoustic impedance ratio of the intake pipe. Both time and frequency domain results are considered. The conclusion is that no single method is perfect or indeed universally applicable to all situations and in a typical investigation of wave action more than one method is likely to be used. The combined use of two methods, wave decomposition and an unusual bi-directional pitot-static tube, seems to offer a robust reliable and useful strategy for measuring wave dynamics in the intake pipe that should prove successful on most IC engines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.