Abstract

When characterizing an unsaturated soil using the triaxial test apparatus, it is required to measure the soil deformation during loading. Recently, a photogrammetry-based method has been developed for total and localized volume change measurements on unsaturated soils during triaxial testing. In this study, more in-depth discussions on the photogrammetry-based method are addressed, such as system setup, the measurement procedure, accuracy self-check, data post-processing, and differences from conventional image-based methods. Also, an application of the photogrammetry-based method on unsaturated soil deformation measurements is presented through a series of undrained triaxial tests with different loading paths. After testing, three-dimensional (3D) models of the tested soils at different loading steps were constructed based on the 3D coordinates of measurement targets on the soil surface. Clear barreling processes for soils during deviatoric loading were observed through the constructed 3D models at different axial strain levels. Soil volume changes and volumetric strain nonuniformities during isotropic and deviatoric loadings were extracted based upon detailed analyses of different soil layers. Through a full-field strain distribution analysis, a shear band evolution process was captured for the soil during deviatoric loading at a low confining stress. The photogrammetry-based method proved to be very powerful for in-depth soil deformation characteristics investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.