Abstract

Turbulence energy is estimated in a backward-facing step flow with three-component (3C, stereo) particle image velocimetry (PIV). Estimates of turbulence energy transport equation for convection, turbulence transport, turbulence production, viscous diffusion, and viscous dissipation in addition to Reynolds stresses are computed directly from PIV data. Almost all the turbulence energy terms in the backward-facing step case can be measured with 3C PIV, except the pressure-transport term, which is obtained by difference of the other turbulence energy terms. The effect of the velocity spatial sampling resolution in derivative estimations is investigated with four two-dimensional PIV measurement sets. This sampling resolution information is used to calibrate the turbulence energies estimated by 3C PIV measurements. The focus of this study is on the separated shear layer of the backward-facing step. The measurements with 3C PIV are carried out in a turbulent water flow at Reynolds number of about 15,000, based on the step height h and the inlet streamwise maximum mean velocity U 0. The expansion ratio (ER) is 1.5. Turbulence energy budget profiles in locations x/h=4, x/h=6, and x/h=10 are compared with DNS data of a turbulent flow. The shapes of profiles agree well with each other. Different ERs between the PIV case (1.5) and the DNS case (1.2) cause higher values for the turbulence energies measured by PIV than the energies by DNS when x/h=10 is approached. PIV results also show that the turbulence energy level in these experiments is generally higher than that of the DNS data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call