Abstract

AbstractA robust structural health monitoring approach measuring the structural responses of bridges such as displacements, strains etc. helps to ensure their safety and serviceability. Static and dynamic loads from vehicles and pedestrians influence the instantaneous responses of bridges, while thermal loads from daily and seasonal temperature variations influence bridge long-term responses. Vision-based monitoring (VBM) is an emerging non-contact, non-destructive monitoring approach. It utilizes cameras to capture sequential images of the structure under load and suitable image processing algorithms for target tracking. VBM has shown promising accuracy in static and dynamic response measurements of bridges, however, the evidence of its accuracy in thermal response measurements is limited. This research illustrates the results of laboratory experiments implementing VBM for thermal response measurements. Thermal responses of a laboratory truss are monitored with VBM and contact sensors such as thermocouples and linear variable differential transformers (LVDT). Cyclic temperature loads are applied to the truss to simulate daily temperature variations. The truss is monitored with GoPro cameras and contact sensors. Measured response trends by VBM and LVDT are comparable, indicating the accuracy of VBM to measure thermal responses. Thermal responses measured by VBM are higher than those of LVDT, signifying requirement for measurement resolution enhancement. The measurement resolution of VBM is 0.099 mm/°C and LVDT1 is 0.041 mm/°C respectively. This discrepancy can be attributed to non-identical targets of VBM and LVDT, resolution of the camera, efficiency of the feature tracking algorithm and robustness of LVDT output. This case study illustrates the feasibility and challenges of VBM for thermal response measurement.KeywordsBridgesImage processingBridge thermal responseVision-based monitoring

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.