Abstract

The measurement of the mechanical properties is a crucial point for new engineered muscle tissues. The final aim is to implant these tissues to substitute or restore the functionality of impaired muscles, so that functional properties as close as possible to the healthy native muscles are required. We developed an engineered skeletal muscle tissue, X-MET, whose strong point is to be created without any endogenous component. This construct is able to contract spontaneously as well as to respond to electrical stimulation. In this work, we developed an experimental system to measure for the first time, the power developed by the X-MET. The power was measured by applying the isovelocity contraction technique. This technique has never been applied on muscle engineered tissues so far, so the aim of this work was to find out the optimal stimulation parameters. Once determined the range of displacement and velocity of shortening for which the X-MET was able to develop power, we proceeded looking at the optimal parameters allowing the production of its maximum power. Preliminary tests showed that the X-MET generates the optimal power when stimulated to shorten 3% of its ideal length at a speed of 0.2 L0/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.