Abstract

We describe an undergraduate laboratory that combines an accurate measurement of the speed of light, a fundamental investigation of a basic laser system, and a nontrivial use of statistical analysis. Students grapple with the existence of longitudinal modes in a laser cavity as they change the cavity length of an adjustable-cavity HeNe laser and tune the cavity to produce lasing in the TEM00 mode. For appropriate laser cavity lengths, the laser gain curve of a HeNe laser allows the simultaneous operation of multiple longitudinal modes. The difference frequency between the modes is measured using a self-heterodyne detection with a diode photodetector and a radio frequency spectrum analyzer. Asymmetric effects due to frequency pushing and frequency pulling, as well as transverse modes, are minimized by simultaneously monitoring and adjusting the mode structure as viewed with a Fabry–Pérot interferometer. The frequency spacing of longitudinal modes is proportional to the inverse of the cavity length with a proportionality constant equal to half the speed of light. By changing the length of the cavity, without changing the path length within the HeNe gas, the speed of light in air can be measured to be (2.9972±0.0002)×108 m/s, which is to high enough precision to distinguish between the speed of light in air and in vacuum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call