Abstract
A first assessment of the spatial variability of ambient black carbon (BC) concentrations in the Greater Area of Athens (GAA) was carried out during an intensive wintertime campaign, when ambient levels are exacerbated by increased biomass burning for residential heating. Short-term daytime BC measurements were conducted at 50 sites (traffic and urban/suburban/regional background) and on-road along 12 routes. Daytime measurements were adjusted based on BC concentrations continuously monitored at a reference site. Indicative nighttime BC ambient concentrations were also measured at several residences across the area. Daytime BC concentrations recorded an average of 2.3 μg m-3 with considerable between-site variability. Concentrations at traffic sites were significantly higher (43% on average), compared with the rest of the sites. Varying levels were observed between background site subtypes, with concentrations at urban background sites (located near the center of Athens and the port of Piraeus) being 34% and 114% higher, on average, than at suburban and regional background sites, respectively. The traffic intensity at the nearest road and the population and built density in the surrounding area of sites were recognized as important factors controlling BC levels. On-road concentration measurements (5.4 μg m-3 on average) enabled the identification of hot-spots in the road network, with peak levels encountered along motorways (13.5 μg m-3 on average). Nighttime measurements demonstrated that wintertime BC pollution, enhanced by residential biomass burning for heating, affects the entire Athens basin. The reference site in central Athens was found to be representative of the temporal variability for daytime and nighttime BC concentrations at background locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.