Abstract

In this paper, we present a method for measuring arbitrary-order correlation functions of the light field using a two-level atomic system. Theoretically, light field information should be mapped onto the atomic system after the light interacts with the atom. Therefore, we can measure the atomic system and thus obtain information about the light field. We study two typical models, the p-photon Jaynes–Cummings model, and the p-photon Tavis–Cummings model. In both models, we find that the pth-order correlation function of an unknown light field can be obtained by measuring the instantaneous change of energy of the two-level atoms with the aid of a known reference light field. Moreover, we find that the interactions other than the dipole interactions between light and atoms have no effect on the measurement results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.