Abstract
Active galactic nuclei (AGNs) are promising environments for the assembly of merging binary black hole (BBH) systems. Interest in AGNs as nurseries for merging BBHs is rising, following the detection of gravitational waves from a BBH system from the purported pair-instability mass gap, most notably GW190521. AGNs have also been invoked to explain the formation of the high-mass-ratio system GW190814. We draw on simulations of BBH systems in AGNs to propose a phenomenological model for the distribution of black hole spins of merging binaries in AGN disks. The model incorporates distinct features that make the AGN channel potentially distinguishable from other channels, such as assembly in the field and in globular clusters. The model parameters can be mapped heuristically to the age and density of the AGN disks. We estimate the extent to which different populations of mergers in AGNs can be distinguished. If the majority of merging black holes are assembled in AGNs, future gravitational-wave observations may provide insights into the dynamics of AGN disks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.