Abstract

In recent years, the field of macropinocytosis has grown rapidly. Macropinocytosis has emerged as a central mechanism by which innate immune cells maintain organismal homeostasis and immunity. Simultaneously, and in contrast to its homeostatic role, it can also drive various pathologies, including cancer and viral infections. Unlike other modes of endocytosis, the tools developed for studying the maturation of macropinosomes remain underdeveloped. Here the protocol describes newly developed tools for studying the redox environment within the lumen of early and maturing macropinosomes. Methodologies for using ratiometric fluorescence microscopy in assessing the pH, production of reactive oxygen species, and the degradative capacity within the lumen of individual macropinosomes in live cells are described. Single organelle measurements offer the advantage of revealing spatiotemporal heterogeneity, which is often lost with population-based approaches. Emphasis is placed on the basic principles of dual fluorophore ratiometric microscopy, including probe selection, instrumentation, calibration, and single-cell versus population-based methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call