Abstract

Software implements a significant proportion of functionality in factory automation. Thus, efficient development and the reuse of software parts, so-called units, enhance competitiveness. Thereby, complex control software units are more difficult to understand, leading to increased development, testing and maintenance costs. However, measuring complexity is challenging due to many different, subjective views on the topic. This paper compares different complexity definitions from literature and considers with a qualitative questionnaire study the complexity perception of domain experts, who confirm the importance of objective measures to compare complexity. The paper proposes a set of metrics that measure various classes of software complexity to identify the most complex software units as a prerequisite for refactoring. The metrics include complexity caused by size, data structure, control flow, information flow and lexical structure. Unlike most literature approaches, the metrics are compliant with graphical and textual languages from the IEC 61131-3 standard. Further, a concept for interpreting the metric results is presented. A comprehensive evaluation with industrial software from two German plant manufacturers validates the metrics' suitability to measure complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.