Abstract

We investigate the transmission of vector beams, correlated in their polarization and spatial degrees of freedom, through cold atoms in the presence of a transverse magnetic coupling field. The resulting phase-dependent dynamics allow us to imprint the spatially varying polarization of a vector beam onto atomic spin polarizations, thereby establishing a direct link between optical space-polarization correlations and atomic-state interference. We find that the resulting absorption profiles show interference fringes whose modulation strength is given by the squared concurrence of the vector beam, letting us identify optical concurrence from a single absorption image. We expect impact across a diverse range of applications, including spintronics, quantum memories, metrology, and clocks. Published by the American Physical Society 2024

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call