Abstract
The molecular motor gliding assay, in which a microtubule or other filament moves across a surface coated with motors, has provided much insight into how molecular motors work. The kinesin-microtubule system is also a strong candidate for the job of nanoparticle transporter in nanotechnology devices. In most cases, several motors transport each filament. Each motor serves both to bind the microtubule to a stationary surface and to propel the microtubule along the surface. By applying a uniform transverse force of 4-19 pN to a superparamagnetic bead attached to the trailing end of the microtubule, we have measured the distance d between binding points (motors). The average value of d was determined as a function of motor surface density σ. The measurements agree well with the scaling model of Duke, Holy, and Liebler, which predicts that (d)~σ(-2/5) if 0.05≤σ≤20 μm(-2) [Phys. Rev. Lett. 74, 330 (1995)]. The distribution of d fits an extension of the model. The radius of curvature of a microtubule bent at a binding point by the force of the magnetic bead was ≈1 μm, 5000-fold smaller than the radius of curvature of microtubules subjected only to thermal forces. This is evidence that at these points of high bending stress, generated by the force on the magnetic bead, the microtubule is in the more flexible state of a two-state model of microtubule bending proposed by Heussinger, Schüller, and Frey [Phys. Rev. E 81, 021904 (2010)].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.