Abstract

Identification of decay products is a relevant task in studying rare collinear decays of low excited heavy nuclei. A technique for measuring the nuclear charge of decay products detected by a wide-aperture ionization chamber—a part of the double-arm time-of-flight spectrometer—is described. Two versions of nuclear charge calibration using data of the reaction 235U(n th, f) have been developed to determine the charge of the decay products. Testing with simulation data shows that the use of charge parameterization based on the Bohr-Willer empirical equation in the calibration procedure makes it possible to determine the nuclear charge of the fission fragments over a wide energy range. The charges of light ions from He to C, predicted on the basis of this approach, appear to be overestimated by two charge units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.