Abstract
We demonstrate real-time quantitative phase imaging as a new optical approach for measuring the evaporation dynamics of sessile microdroplets. Quantitative phase images of various droplets were captured during evaporation. The images enabled us to generate time-resolved three-dimensional topographic profiles of droplet shape with nanometer accuracy and, without any assumptions about droplet geometry, to directly measure important physical parameters that characterize surface wetting processes. Specifically, the time-dependent variation of the droplet height, volume, contact radius, contact angle distribution along the droplet's perimeter, and mass flux density for two different surface preparations are reported. The studies clearly demonstrate three phases of evaporation reported previously: pinned, depinned, and drying modes; the studies also reveal instances of partial pinning. Finally, the apparatus is employed to investigate the cooperative evaporation of the sprayed droplets. We observe and explain the neighbor-induced reduction in evaporation rate, that is, as compared to predictions for isolated droplets. In the future, the new experimental methods should stimulate the exploration of colloidal particle dynamics on the gas-liquid-solid interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.