Abstract
Determining the precise shape of the emission profile across the thickness of the active layer in organic light-emitting diodes is of importance for device optimization and assessing the validity of advanced device models. We present a comprehensive method for accurately measuring the shape of the emission profile, the intrinsic spectrum of emitting dipoles and the emitting dipole orientation. The method uses a microcavity light outcoupling model, which includes self-absorption and optical anisotropy, and is based on the full wavelength, angle and polarization resolved emission intensity. Application to blue (polyfluorene-based) and orange-red (NRS-PPV) polymer organic light-emitting diodes reveals a peaked shape of the emission profile. A significant voltage and layer thickness dependence of the peak positions is observed, with a demonstrated resolution better than 5 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.