Abstract
Avalanche forecasting is an important measure required for the safety of the people residing in hilly regions. Snow avalanches are caused due to the changes that occur in the snow and weather conditions. The prominent changes, that cause the variations which further culminate into an avalanche, can be given higher significance in the forecasting model by application of appropriate weights. These weights are decided based on the relation of each weather parameter to snow avalanche occurrence by the forecaster with the help of historical data. A method is proposed in the current work that can help in removing this subjectivity by using correlation coefficients. Present work explores the use of Pearson correlation coefficient, Spearman rank correlation coefficient and Kendall Tau correlation coefficient to obtain the weighting factors for each parameter used for avalanche forecasting. These parameters are further used in the cosine similarity based nearest neighbour model for avalanche forecasting. Bias and Peirce’s Skill Score are performance measures used to evaluate the outcome of the experimental work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.