Abstract
Abstract The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C1303, “Standard Test Method for Predicting Long-Term Thermal Resistance of Closed-Cell Foam Insulation,” have led to a broad ruggedness test. This test includes the aging of full-size insulation specimens for time periods up to 5 years for later comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin-slice stack composition, product facings, original product thickness, product density, and product type. This paper will compare the results after two years of full-thickness aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.