Abstract

We have examined polycrystalline MgB2 by electron energy loss spectroscopy (EELS) and density of state calculations. In particular, we have studied two different crystal orientations, [110] and [001] with respect to the incident electron beam direction, and found significant changes in the near-edge fine-structure of the B K-edge. Density functional theory suggests that the pre-peak of the B K-edge core loss is composed of a mixture of pxy and pz hole states and we will show that these contributions can be distinguished only with an experimental energy resolution better than 0.5 eV. For conventional TEM/STEM instruments with an energy resolution of ~1.0 eV the pre-peak still contains valuable information about the local charge carrier concentration that can be probed by core-loss EELS. By considering the scattering momentum transfer for different crystal orientations, it is possible to analytically separate pxy and pz components from of the experimental spectra With careful experiments and analysis, EELS can be a unique tool measuring the superconducting properties of MgB2, doped with various elements for improved transport properties on a sub-nanometer scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.