Abstract

Among the proteins required for lipid metabolism in Mycobacterium tuberculosis are a significant number of uncharacterized serine hydrolases, especially lipases and esterases. Using a streamlined synthetic method, a library of immolative fluorogenic ester substrates was expanded to better represent the natural lipidomic diversity of Mycobacterium. This expanded fluorogenic library was then used to rapidly characterize the global structure activity relationship (SAR) of mycobacterial serine hydrolases in M.smegmatis under different growth conditions. Confirmation of fluorogenic substrate activation by mycobacterial serine hydrolases was performed using nonspecific serine hydrolase inhibitors and reinforced the biological significance of the SAR. The hydrolases responsible for the global SAR were then assigned using gel-resolved activity measurements, and these assignments were used to rapidly identify the relative substrate specificity of previously uncharacterized mycobacterial hydrolases. These measurements provide a global SAR of mycobacterial hydrolase activity, a picture of cycling hydrolase activity, and a detailed substrate specificity profile for previously uncharacterized hydrolases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.