Abstract

We theoretically study the entanglement of Hawking radiation pairs emitted by an analogue black hole. We find that this entanglement can be measured by the experimentally accessible density-density correlation function, vastly simplifying the measurement. We find that while the Hawking radiation exiting the black hole might be Planck-distributed, the correlations between the Hawking radiation and the partner particles has a distribution which is weaker but broader than Planckian. Thus, the high energy tail of the distribution of Hawking radiation should be entangled, whereas the low energy part should not be. This confirms a previous numerical study. The full Peres-Horodecki criterion is considered, as well as a simpler criterion in the stationary, homogeneous case. Our method applies to systems which are sufficiently cold that the thermal phonons can be neglected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.