Abstract

The dielectric constants of diverse media surrounding single-walled carbon nanotubes (SWCNTs) were probed using photoluminescence (PL) excitation maps of porphyrin/SWCNT aqueous suspensions. The excitation and emission maxima of the nanotubes in these maps were used to probe the dielectric constant variation and doping originated from the porphyrin molecules. The net dielectric constant was calculated for the surrounding medium for each nanotube index and porphyrin isomer. The spread of the dielectric constant values calculated from the data for each (n, m) nanotube chiral index is interpreted on the basis of selective adsorption by each (n, m) nanotube, for each porphyrin isomer. Ultraviolet (UV) Raman spectroscopy corroborates the doping process through the shift of a G band around 1608 cm-1

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.