Abstract

Microtubule dynamic instability, the process by which individual microtubules switch between phases of growth and shrinkage, is essential for establishing the architecture of cellular microtubule structures, such as the mitotic spindle. This switching process is regulated by a complex network of microtubule-associated proteins (MAPs), which modulate different aspects of microtubule dynamic behavior. To elucidate the effects of MAPs and their molecular mechanisms of action, in vitro reconstitution approaches with purified components are used. Here, I present methods for measuring individual and combined effects of MAPs on microtubule dynamics, using purified protein components and total-internal-reflection fluorescence (TIRF) microscopy. Particular focus is given to the experimental design, proper parameterization, and data analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.