Abstract

AbstractCore-collapse supernovae are expected to be efficient producers of dust, and recent Herschel and ALMA observations have revealed up to 1 M⊙ of cold dust in the inner ejecta of SN 1987A. The formation time scale, spatial distribution and clumpiness, and the importance of the different heating sources of the dust remain poorly understood. We have started a project to make detailed 3D dust radiative transfer models for SN 1987A, based on a combination of the latest observational constraints and input from 3D hydrodynamical models and dust formation models. Preliminary results seem to indicate the need for large, micron-sized dust grains, and a relatively large dust mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call