Abstract
A new measure of dissimilarity between two EEG segments is proposed. It is derived from the application of the mathematical concept of distance between series of one-step predictions according to the estimated non-linear autoregressive functions. The non-linear autoregressive estimation is performed by non-parametric regression using kernel estimators. The possibility of applying this measure for automatic classification of EEG segments is explored. For this purpose multidimensional scaling and cluster analyses are applied on the basis of the calculated dissimilarity measures. In particular, its application to different EEG segments with delta activity and also with alpha waves reveals high agreement with visual classification by EEG specialists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.