Abstract
Synthesis models of the diffuse Cosmic X-ray Background (CXB) suggest that it can be resolved into discrete sources, primarily Active Galactic Nuclei (AGNs). Measuring the CXB accurately offers a unique probe to study the AGN population in the nearby Universe. Current hard X-ray instruments suffer from the time-dependent background and cross-calibration issues. As a result, their measurements of the CXB normalization have an uncertainty of the order of sim 15%. In this paper, we present the concept and simulated performances of a CXB detector, which could be operated on different platforms. With a 16-Unit CubeSat mission running for more than two years in space, such a detector could measure the CXB normalization with sim 1% uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.