Abstract

BackgroundThe compressional modulus of elasticity is an important mechanical property for understanding stalk lodging, but this property is rarely available for thin-walled plant stems such as maize and sorghum because excised tissue samples from these plants are highly susceptible to buckling. The purpose of this study was to develop a testing protocol that provides accurate and reliable measurements of the compressive modulus of elasticity of the rind of pith-filled plant stems. The general approach was to relying upon standard methods and practices as much as possible, while developing new techniques as necessary.ResultsTwo methods were developed for measuring the compressional modulus of elasticity of pith-filled node–node specimens. Both methods had an average repeatability of ± 4%. The use of natural plant morphology and architecture was used to avoid buckling failure. Both methods relied up on spherical compression platens to accommodate inaccuracies in sample preparation. The effect of sample position within the test fixture was quantified to ensure that sample placement did not introduce systematic errors.ConclusionsReliable measurements of the compressive modulus of elasticity of pith-filled plant stems can be performed using the testing protocols presented in this study. Recommendations for future studies were also provided.

Highlights

  • The compressional modulus of elasticity is an important mechanical property for understanding stalk lodging, but this property is rarely available for thin-walled plant stems such as maize and sorghum because excised tissue samples from these plants are highly susceptible to buckling

  • One of the most important mechanical properties is the modulus of elasticity, which provides a linear relation between stress and strain [2]

  • This mechanical property is essential for calculating stress states as well as physical deformation of a structure or a plant [3, 4]

Read more

Summary

Introduction

The compressional modulus of elasticity is an important mechanical property for understanding stalk lodging, but this property is rarely available for thin-walled plant stems such as maize and sorghum because excised tissue samples from these plants are highly susceptible to buckling. The purpose of this study was to develop a test‐ ing protocol that provides accurate and reliable measurements of the compressive modulus of elasticity of the rind of pith-filled plant stems. In spite of the economic significance of plants with thin-walled stems (e.g., maize, sorghum, wheat, etc.), few studies have investigated reliable methods for obtaining their mechanical properties under compressive loading. One of the most important mechanical properties is the modulus of elasticity, which provides a linear relation between stress and strain [2]. This mechanical property is essential for calculating stress states as well as physical deformation of a structure or a plant [3, 4].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.