Abstract

The circular polarization of the stochastic gravitational wave background (SGWB) is a key observable for characterizing the origin of the signal detected by Pulsar Timing Array (PTA) collaborations. Both the astrophysical and the cosmological SGWB can have a sizeable amount of circular polarization, due to Poisson fluctuations in the source properties for the former, and to parity violating processes in the early universe for the latter. Its measurement is challenging since PTA are blind to the circular polarization monopole, forcing us to turn to anisotropies for detection. We study the sensitivity of current and future PTA datasets to circular polarization anisotropies, focusing on realistic modelling of intrinsic and kinematic anisotropies for astrophysical and cosmological scenarios respectively. Our results indicate that the expected level of circular polarization for the astrophysical SGWB should be within the reach of near future datasets, while for cosmological SGWB circular polarization is a viable target for more advanced SKA-type experiments. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.