Abstract

A quantum computer has now solved a specialized problem believed to be intractable for supercomputers, suggesting that quantum processors may soon outperform supercomputers on scientifically important problems. But flaws in each quantum processor limit its capability by causing errors in quantum programs, and it is currently difficult to predict what programs a particular processor can successfully run. We introduce techniques that can efficiently test the capabilities of any programmable quantum computer, and we apply them to twelve processors. Our experiments show that current hardware suffers complex errors that cause structured programs to fail up to an order of magnitude earlier - as measured by program size - than disordered ones. As a result, standard error metrics inferred from random disordered program behavior do not accurately predict performance of useful programs. Our methods provide efficient, reliable, and scalable benchmarks that can be targeted to predict quantum computer performance on real-world problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call