Abstract
Many interactions between small molecules and particles occur in solutions. They are surrounded by other molecules that do not react, for example, biological processes in water, chemical reactions in gas or liquid solutions, and environmental reactions in air and water. However, predicting the rate of such diffusive interactions remains challenging, due to the random motion of molecules in solutions, as exampled by the famous Brownian motion of pollen particles. In this report, we experimentally confirmed that a disruptive rate equation we have published before can predict the association rate of typical adsorption at interfaces, which has a surprising fraction order of 4/3 that has not been considered before. This could be an important step toward a generalized method to predict the adsorption rate of many reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.