Abstract

Fouling of contact lenses is often due to tear protein diffusion into and aggregation within the contact lens material. These processes can diminish water and oxygen diffusion and create optical cloudiness of the lens. In order to understand the interactions between proteins and hydrogel contact lens materials a study was designed to measure the diffusivity of two model proteins within hydrogel films of varying composition using fluorescence correlation spectroscopy (FCS). Diffusion of human serum albumin (HSA) and apoferritin (aFER) was examined in a range of ~20 μm thick poly(acrylamide) (pAA) and poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels. Protein diffusivity was measured as a function of depth position within each hydrogel film. The characteristic diffusion time for two proteins in pHEMA hydrogels increased relative to both their diffusivity in solution and in pAA hydrogels, indicating that the protein-pHEMA interaction rather than the degree of hydrogel crosslinking is responsible for the observed effects. The resulting spatial representation of the molecular diffusion of proteins into and interaction with hydrogel materials builds a basis on which to conduct similar studies using commercial contact lens samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.