Abstract

In this paper we consider the problem of measuring stationarity in locally stationary longmemory processes. We introduce an L2-distance between the spectral density of the locally stationary process and its best approximation under the assumption of stationarity. The distance is estimated by a numerical approximation of the integrated spectral periodogram and asymptotic normality of the resulting estimate is established. The results can be used to construct a simple test for the hypothesis of stationarity in locally stationary long-range dependent processes. We also propose a bootstrap procedure to improve the approximation of the nominal level and prove its consistency. Throughout the paper, we will work with Riemann sums of a squared periodogram instead of integrals (as it is usually done in the literature) and as a byproduct of independent interest it is demonstrated that the two approaches behave differently in the limit. AMS subject classification: 62M10, 62M15, 62G10

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.