Abstract
We develop a new approach for modeling public sentiment by micro-level geographic region based on Bayesian hierarchical spatial modeling. Recent production of detailed geospatial political data means that modeling and measurement lag behind available information. The output of the models gives not only nuanced regional differences and relationships between states, but more robust state-level aggregations that update past research on measuring constituency opinion. We rely here on the spatial relationships among observations and units of measurement in order to extract measurements of ideology as geographically narrow as measured covariates. We present an application in which we measure state and district ideology in the United States in 2008.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.