Abstract
Capacity for dispersal is a fundamental fitness component of plant pathogens. Characterization of plant pathogen dispersal is important for understanding how pathogen populations change in time and space. We devised a systematic approach to measure and analyze rain splash-driven dispersal of plant pathogens in field conditions, using the major fungal wheat pathogen Zymoseptoria tritici as a case study. We inoculated field plots of wheat ( Triticum aestivum) with two distinct Z. tritici strains. Next, we measured disease intensity as counts of fruiting bodies (pycnidia) using automated image analysis. These measurements characterized primary disease gradients, which we used to estimate effective dispersal of the pathogen population. Genotyping of reisolated pathogen strains with strain-specific PCR confirmed the conclusions drawn from phenotypic data. Consistently with controlled environment studies, we found that the characteristic scale of dispersal is tens of centimeters. We analyzed the data using a spatially explicit mathematical model that incorporates the spatial extent of the source, rather than assuming a point source, which allows for a more accurate estimation of dispersal kernels. We employed bootstrapping methods for statistical testing and adopted a two-dimensional hypotheses test based on kernel density estimation, enabling more robust inference compared with standard methods. We report the first estimates of dispersal kernels of the pathogen in field conditions. However, repeating the experiment in other environments would lead to more robust conclusions. We put forward advanced methodology that paves the way for further measurements of plant pathogen dispersal in field conditions, which can inform spatially targeted plant disease management. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.