Abstract

Probing the energy and spin electron properties of materials by means of photoemission spectroscopy gives insights into the low-energy phenomena of matter driven by spin orbit coupling or exchange interaction. The information that can be derived from complete photoelectron spectroscopy experiments, beyond $E$(k), is contained in the photoemission transition matrix elements that determine peak intensities. We present here a complete photoemission study of the spin-polarized bands of $2H\text{\ensuremath{-}}{\mathrm{NbSe}}_{2}$, a material that presents a surface spin-texture. Circular dichroism in angular-resolved photoemission spectroscopy (CD-ARPES) data are compared with spin-polarized angular-resolved spectra (SARPES) as measured with linearly polarized radiation in a well-characterized experimental chirality, at selected photon energy values. CD-ARPES is due to a matrix element effect that depends strongly on photon energy and experimental geometry: we show that it cannot be used to infer intrinsic spin properties in $2H\text{\ensuremath{-}}{\mathrm{NbSe}}_{2}$. On the other hand, SARPES data provide reliable direct information on the spin properties of the electron states. The results on $2H\text{\ensuremath{-}}{\mathrm{NbSe}}_{2}$ are discussed, and general methodological conclusions are drawn on the best experimental approach to the determination of the spin texture of quantum materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.