Abstract
Pulsed electrically and optically-detected magnetic resonance are extremely sensitive to changes in the permutation symmetry of weakly-coupled spin pairs, and are well-suited for investigating devices with a small number of spins. However, the change in observable from conventional electron spin resonance modifies the results of standard inductively-detected pulse sequences which are routinely used to obtain phase coherence and lifetimes. Whilst these effects have been discussed for single-pulse experiments, their role in multi-pulse sequences is less clear. Here, we investigate this effect in Hahn echo and inversion-recovery sequences, and show a second set of narrower echoes are produced that distort measurement outcomes. We demonstrate that phase cycling is able to deconvolve the additional echo signals, allowing spin relaxation times to be reliably extracted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.