Abstract
Determination of sorption of hydrophilic, weakly sorbing organic compounds in soil by conventional batch methods using a slurried suspension is often prone to considerable errors because small changes in the solution concentration on equilibration must be accurately determined. This difficulty is exacerbated for compounds susceptible to degradation, which also decreases the solution concentration. The objective of this study was to determine sorption of hydrophilic pesticides by applying an unsaturated transient flow method, which enables determination of sorption at sufficiently small solution to soil ratios. The method makes use of piston-like displacement of the antecedent solution in equilibrium with sorbed phase when pesticide-free water is infiltrated into a soil column spiked with a pesticide. Pesticide sorption and the solution concentration are inferred from a plot of total pesticide content per unit mass of soil vs. water content in a region where the antecedent solution is accumulated. Thus, extraction of solution from relative dry soil is unnecessary. We tested this method for two hydrophilic pesticides, monocrotophos [dimethyl (E)-1-methyl-2-(methyl-carbamoyl) vinyl phosphate] and dichlorvos (2,2-dichlorovinyl dimethyl phosphate). The sorption coefficient, K(d), obtained for monocrotophos was slightly lower than that by batch method (K(d) = 0.10 vs. 0.19 L kg(-1)), whereas for dichlorvos, a compound highly susceptible to degradation, the unsaturated flow method yielded a much smaller K(d) (0.19 vs. 3.22 L kg(-1)). The K(d) values for both compounds were consistent with the observed retardation in the pesticide displacement in the columns. The proposed method is more representative of field conditions and particularly suitable for weakly sorbing organic compounds in soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.