Abstract

ABSTRACT We present a detailed analysis of the velocity structure of the Virgo cluster using XMM–Newton observations. Using a novel technique which uses the Cu K α instrumental line to calibrate the EPIC-pn energy scale, we are able to obtain velocity measurements with uncertainties down to Δv ∼ 100 km s−1. We created 2D projected maps for the velocity, temperature, metallicity, density, pressure, and entropy with an spatial resolution of 0.25 arcmin. We have found that in the innermost gas there is a high velocity structure, most likely indicating the presence of an outflow from the AGN while our analysis of the cluster cool core using RGS data indicates that the velocity of the gas agrees with the M87 optical redshift. An overall gradient in the velocity is seen, with larger values as we move away from the cluster core. The hot gas located within the western radio flow is redshifted, moving with a velocity ∼331 km s−1 while the hot gas located within the eastern radio flow is blueshifted, with a velocity ∼258 km s−1, suggesting the presence of backflows. Our results reveal the effects of both AGN outflows and gas sloshing, in the complex velocity field of the Virgo cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.