Abstract
Skewness plays a vital role in different engineering phenomena so it is desired to measure this characteristic accurately. Several measures to quantify the extent of skewness in distributions have been developed over the course of history but each measure has some serious limitations. Therefore, in this article, we propose a new skewness measuring functional, based on distribution function evaluated at mean with minimal assumptions and limitations. Four well recognized properties for an appropriate measure of skewness are verified and demonstrated for the new measure. Comparisons with the conventional moment-based measure are carried out by employing both functionals over range of distributions available in literature. Furthermore, the robustness of the proposed measure against unusual data points is explored through the application of influence function. The Mathematical findings are verified through meticulous simulation studies and further verified by real data sets coming from diverse fields of inquiries. It is witnessed that the suggested measure passes all the checks with distinction while comparing to the classical moment-based measure. Based on computational simplicity, applicability in more general environment and preservation of c-ordering of distribution, it may be considered as an attractive addition to the family of skewness measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.