Abstract

AbstractMass flux is a key quantity in parameterizations of shallow convection. To estimate the shallow convective mass flux as accurately as possible, and to test these parameterizations, observations of this parameter are necessary. In this study, we show how much the mass flux varies and how this can be used to test factors that may be responsible for its variation. Therefore, we analyze long-term Doppler radar and Doppler lidar measurements at the Barbados Cloud Observatory over a time period of 30 months, which results in a mean mass flux profile with a peak value of 0.03 kg m−2 s−1 at an altitude of ~730 m, similar to observations from Ghate et al. at the Azores Islands. By combining Doppler radar and Doppler lidar measurements, we find that the cloud-base mass flux depends mainly on the cloud fraction and refutes an idea based on large-eddy simulations that the velocity scale is in major control of the shallow cumulus mass flux. This indicates that the large-scale conditions might play a more important role than what one would deduce from simulations using prescribed large-scale forcings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.