Abstract

Human life histories combine late age at first reproduction, long reproductive span, relatively high fertility, and substantial postreproductive survival. However, even among the most fecund populations, human fertility falls far below its theoretical maximum. The extent of parental care required for successful offspring recruitment and widespread fertility decline under proper economic conditions suggest that selection on fertility is constrained by trade-offs with recruitment. Here we measure the trade-offs between life history traits under selection by approximating the slope of the selective constraint curve on two traits at the observed values. Using a selection of populations that span human demographic space, we find that the substitution elasticity of fertility for infant survival shows age-related patterns, with minimum substitution elasticities ranging from 14 to 22 for the four populations. The age of this minimum occurs earlier in the high-mortality populations relative to generation time than it does in the low-mortality populations. The human curves are qualitatively similar to one of two comparable nonhuman primate age-specific substitution elasticity curves. The curve for rhesus macaques has a similar shape but is shifted down, meaning that the threshold for switching from investing in survival to fertility is lower at all ages. The magnitude of the substitution elasticities is similar between chimpanzees and humans but the shape is quite different, rising more slowly for a longer fraction of the chimpanzee life cycle. The steeply rising substitution elasticities with age in humans has clear implications for the evolution of reproductive senescence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call