Abstract
Medical diagnostic accuracies can be improved when the pattern is simplified through representation by important features. The feature vector, which is comprised of the set of all features used to describe a pattern, is a reduced-dimensional representation of that pattern. The noise in a classification model can be reduced by identifying a set of salient features and then more accurate classification can be obtained. In this study, a signal-to-noise ratio (SNR) saliency measure was employed to determine saliency of input features of probabilistic neural networks (PNNs) used in classification of internal carotid arterial Doppler signals (ICADS). In order to extract features representing the ICADS, model-based methods were used. The PNNs used in the ICADS classification were trained for the SNR screening method. The application results of the SNR screening method to the ICADS demonstrated that classification accuracies of the PNNs with salient input features are higher than that of the PNNs with salient and nonsalient input features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.